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I.     INTRODUCTION 

A recent and significant addition  to  the  literature of partial 

enumeration methods of solving integer  linear programming problems has 

been  the algorithm of   Balas       .     Building upon   the   foundation  laid  by 

(I)  and (2), a version of  this algorithm was outlined  In  (3)   that 

especially  lends  Itself  to  computer  Implementation.     This has  since 

been programmed, and  the purpose of  this  report  Is  to describe some 

computational  experience with  the algorithm and  to  discuss  future 

avenues of research  that may  be undertaken. 

*Any views expressed  In  this paper are  those of the author.     They 
should not  be   Interpreted as  reflecting  the views of  The  RAND Corporation 
or  the official opinion or policy of any of  Its governmental  or private 
research sponsors.     Papers  are  reproduced  by  The  RAND Corporation as a 
courtesy  to members of  Its  staff. 
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II.     SOME ASPECTS OF THE ALGORITHM 

We  shall   first  review certain  features of  the algorithm.     For a 

detailed exposition see  (3).     Our problem  Is  to 

Minimize £.   c.   x. 

Subject  to b    + I    a. .   x    £ 0 J  »  I,   ... , m 

x.   =Oorl 1=1,...,n 
i 

* 
c.,   b.   and a.,   are constants  (c,   ^ 0)   . 

1       j i j I ' 

Given that there are upper bounds on the Integer variables In 

question, the above representation Is sufficiently general to describe 

any Integer programming problem. A solution Is an n vector of G's and 

I's. There are obviously 2 different possible solutions to the above 

problem. A feasible solution Is a solution which satisfies b. + E a ^ 0, 

J ■ 1, ..., m, and an optimal feasible solution Is a feasible solution 

which yields  the  lowest value   for I    c    x  . 

The basic  Idea of  the  Balas algorithm Is  to obtain an optimal 

feasible solution  (or knowledge  that none exists)  without having to 

evaluate each of  the 2    possible solutions.     However,   the procedure does 

enumerate a subset of  the 2     solutions, and  there  Is no    guarantee  that 

the size of this  subset will  not approach 2    for any given problem. 

Tlius ,  as with any enumeratlve procedure,  computational  experience  Is  the 

best   Indicator of Its worthiness  for various  types of problems. 

Any nonblnary  Integer variable x with upper bound v has  the  binary 
k       1 

representation x « £    ^ ^i » w^ere ^  ^s  the smallest  Integer such  that 

Ict-l v i 2       -I and  the y.   are  binary variables.     The   transformation x «   I   - y 

will   change any c < 0  to one   that  Is > 0. 
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A partial  solution of size k Is a specification of values  (0 or 

1)   for k of  the n variables.    A completion of a partial   solution  Is a 

specification of  the other n-k variables  not   Included   In  the partial 

solution.     Thus,   If  It  can be  shown  that a  certain partial   solution 

has no   feasible completion, or  If a completion which  gives  the   least 
n-k 

value  to E.   c.   x.   can  readily  be  found,   then one may  eliminate  2 

possible  solutions   from consideration   In  searching  for an optimal 

feasible  solution  to   the original  problem.     The  Balas procedure  con- 

sists of considering a   sequence of partial   solutions,  and of  trying 

to eliminate groups of  completions  by  showing   that  none are   feasible 

or  that an objective  function value as  good as any contained  In  that 

group of completions has already been attained.     The algorithm proceeds 

In an exhaustive and nonrepetltlve manner which  leads   to   the   implicit 

enumeration of all  possible solutions. 

Fathoming a partial  solution  Is defined as:     (a)   finding a  best 

feasible completion which yields a   lower value   for  the objective   func- 

tion  than  the best  feasible solution known  to  date;  or (b)   showing 

that no   feasible completions exist which yield a  lower value  to   the 

objective  than the  best  feasible  solution known to date.     The procedure 

begins with a partial   solution where k « 0.     A best completion  (I.e., 

that completion yielding the  smallest objective  function value)   Is  the 

one with all  n-k variables  being  set   to  zero   (remember all   c.   ^0). 

If this  best completion  Is  feasible,   then  It  Is not necessary   to con- 

sider other possible  completions of  this   same partial   solution.     If  It 

Is not   feasible and  It also cannot  be shown  that  there are no other 

feasible  solutions which yield lower objective  function values  than 

the  best   feasible  solution known   to  date,   then a  uew partial   solution 

Is contemplated.     The  new partial   solution  (k  raised   to  k +   1)   Is 

obtained via an augmentation procedure.     Obviously,   If  fathoming occurs 

at k = 0,   then all   2 possible  solutions have been  Implicitly  enu- 

merated.     If   fathoming occurs at  k > 0,   then a  smaller number of  solu- 

tions have  been  Implicitly enumerated,  and   the  rest must  still   be 

examined. 

The  augmentation  procedure   that   Is used   In  the present  version of 

the algorithm   Is   to  add  that  variable which will   decrease  the   Infeas- 



ibLllty of  the present  solutLon the most.     This  tends  to motivate 

feasible solutions  to appear early.    Once a  feasible solution  Is ob- 

tained,   It  Is kept  In storage and  Is replaced only by another feasible 

solution which yields a  lower objective  function value.     Ihus,   the 

enumeration is "primal   feasible" and termination prior to attaining 

optlmallty  still may  lead  to a  fairly good solution. 

All partial  solutions must either be  fathomed or augmented.     From 

the point of view of minimizing the  total  amount of computation,   It 

behooves us  to  try  to get  the  fathoming done with as little augmenta- 

tion as possible. 

Any partial  solution  (except where k = 0)   that is  being fathomed 

can itself be viewed as an augmentation of other partial  solutions. 

Consider a partial  solution of size kf and assume  that an augmented 

partial  solution of size k + 1 can be  fathomed with the value of the 

additional variable ■ 0 and then can also  be  fathomed with  the value 

of the additional variable =  I;   then we have also  fathomed the partial 

solution of size k.     This can readily be seen because  the  fathoming 
n-k-l of the augmented partial   solution produces  2 Implicitly enumerated 

possible solutions  for each of the  two possible values of the additional 

variable.     Thus, we have a  total of 2(2 )   ■  2        Implicitly enu- 

merated solutions which  Is  the  required number  for fathoming of the 

partial  solution of  length k. 



III.    COMPUTATIONAL  EXPERIENCE 

Unfortunately, at present,   there  Is no  standard group of  test 

problems against which  integer programming algorithms can be  tested. 

However, a group of  test problems have  been gathered  in  (A)  with which 

three "cutting plane" codes are compared.     The results are  tabulated 

in  terms of number of  iterations  required by each.     Running  times are 

not given, although  this would provide  the most convenient way  to com- 

pare  the  retormulated Balas algorithm with  the cutting plane methods. 

Thus, we  shall  report our running  times on certain of the problems of 

(4)  without attempting code comparisons. 

TJiere are  ten "fixed charge" problems   in  (4) .     These problems 

feature special  constraints which  force certain variables  to assume 

nonzero value  if some of the other variables  take on nonzero values. 

Our experience with the algorithm applied  to some of these problems  is 

summarized below. 

Running Time 
To Optimal Value 

No.  of Running Time        of Obj.   Function 
Haldi Binary No.  of To  Termination    (using upper bound 

Problem No.     Variables    Inequalities (seconds) on obi.   func.) 

1 14 4 3 3 
2 14 4 3 3 
3 14 4 4 4 
4 14 4 2 2 
5 20 6 420 242 
6 20 6 120 68 
7 20 4 360 235 
8 20 4 60 l-f 

The   last nine problems  In  (4)  were obtained  from I IM and are a 

potpourri of  integer problems which  feature matrices of OV and  I's. 

Listed below  is our experience with  some of  these problems. 



Running Time 
To Optimal Value 

No.  of Running Time        of Obj.  Function 
I9i Binary No.  of To  Termination    (using upper bound 

Problem No.    Variables    Inequalities (seconds) on obj.   func.) 

1 21 7 3A A 
2 21 7 20 2 
3 20 3 2 2 
A 30 15 >600 60* 
6 31 31 >600 2** 
9 15 50 UA 1+ 

In another problem of the "fixed charge - knapsack" variety with 

A8 constraints and 26 variables,  the  Balas algorithm did not  flr.d an 

optimal  solution  In 10 minutes.    Hovever, although not  terminating  It 

did reach the optimal value of  the objective  function  In 30 seconds 

when supplied with an additional constraint  forcing the objective below 

a certain Initial  value. 

On a problem  from (5) where  the PK1P91  code did not obtain an 

optimal  solution  In 20 minutes of 7090  time, we did find an optimal 

solution  In 8 minutes.    However, we did not obtain termination.     In 

other words,  the algorithm did not know it had  found the optimal  solu- 

tion and had  to continue  Its  search.     The problem was 31  x 27.     Intro- 

duction of an  Initial upper  bound on  the objective  function did cut  the 

time  to  reach an optimal   solution  to a  few seconds.     If a  good estimate 

of the value of  the optimal  solution  Is available a priori  then the 

computation could be terminated as  soon as  It achieves  that value. 

Tentative conclusions that can be drawn from the above experience 

are as  follows: 

1. The algorithm seems fairly successful In Its present form for 

problems of less than 30 variables, bit may not be able to efficiently 

handle problems containing a greater number of variables. 

2. The algorithm seems capable of handling large numbers of con- 

straints given  that  the number of variables  Is kept limited. 

Optimal  value of objective  function ■  10;   In time  recorded Balas 
achieved  12. 

Optimal  value of objective   function ■  18;   In time  recorded Balas 
achieved  19. 



3. Tlie algorithm  tends   to produce  feasible  solutions  in  short 

order,  and  thus  seems appropriate  for  large problems where only   feas- 

ible,  and not optimal,   solutions are  sought. 

4. Prior knowledge about   likely values   for variables and  bounds 

on  the objective  function can  be extremely useful.     Our  results  so   far 

suggest   that ad hoc  guessing procedures about  such values combined with 

this algorithm may  be of great  interest. 
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IV.    FURTHER DEVELOPMENTS 

The algorithm was originally programmed  In essence  following  the 

outline of reference  (3), and most of  the computational   experience 

reported herein  Is  based on  that version.     Certain modifications, 

described below,   suggested  themselves and some of these have been 

incorporated  in a    econd version of  the algorithm that has now been 

programmed. 

1. Some computation time can possible  be saved by  setting a 

number  for  the  first "acceptable" value of   the objective  function.     In 

other words, we are   indicating an upper bound beyond which a   feasible 

solution is not of  interest.     This,   in essence,   imposes a constraint 

that  the objective  function shall   be  less   than a certain value,     ftiis 

eliminates explicit consideration of relatively uafavorable  feasible 

solutions.     The upper  bound will  be an  Input parameter. 

2. On some problems  it was  found  that  the algorithm produced an 

optimal  solution quickly,  but  took overlong  to  terminate.     To hasten 

termination,  an aspiration level of the objective  function can br 

explicitly   introduced.     Once  this aspiration  level   Is attained,  compu- 

tation  is   terminated.     The aspiration  level will  be an  Input parameter. 

3. In moving from one  solution  to  the next,   the only criteria 

was  that  there  be an  improvement  in the objective  function.     An  input 

parameter will  be   Introduced  to allow a  specification of  the minimum 

size of  improvement  that  is acceptable  in moving from one  feasible 

solution  to  the next.     This  is  intended  to   speed progress  toward an 

optimal  solution. 

4. In picking the variables  to augment a partial   solution, 

primary attention  is given  to  increasing feasibility.    Another compu- 

tational parameter has now been  Introduced which allows  some  considera- 

tion of enhancement of  the objective  function in picking augmentation 

variables. 

5. Provision has now  been made  so  that any  initial   solution can 

be used as a  starting point.     Thus,  a priori  Information can be utilized 

(see reference 3,  Sec.  V,  for  fuller discussion). 

Preliminary  evidence  indicates  the upper bound and  the aspiration 

level  are having  the most pronounced effects. 
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Among  the avenues of new research which remain open are  the 

following: 

(a) At present,   the algorithm tries only  to  find the best 

completion of each partial   solution, and then tests for  its  feasibility. 

Augmentation takes place  if it cannot be shown  that  there does n>t 

exist a  feasible solution yielding a  lower objective  function value 

than  the  incumbent  feasible  solution.     Instead of   finding merely  the 

best completion,   the algorithm could be adjusted  to  scan a  few comple- 

tions  (the  best, next  best,  etc.)   in order  to  try   to obtain  the  feasible 

completion that  is best.     This would consist of making an array of say 

the  ten "nearest" best  (In  terms of objective  function value)   solutions 

and  scanning these at every  iteration. 

(b) Feasibility considerations are determined at present  by 

considering every constraint  separately  to  determine   If any of the 
a 

variables   In the T    set can decrease  the total   Infeasibility of the 

present  intermediate  solution to  the problem.     Use of other constraints, 

which must also be satisfied (composed of combinations of  the original 

constraints) , could lead  to  quicker determination of "no possible   feas- 

ibility."    This notion  Is analogous to  the  surrogate constraint concept 

put  forth  by Glover (2).     This same notion could help  In  limiting the 

T    set  to more ultimately desirable augmentation variable dandidates 

In  terms of their effects upon groups of contraints.     The  idea of  the 

surrogate constraint  Is  to  find something which "cuts" more strongly 

than one constraint at a  time.    We can also consider  taking a partial 

solution as g'.ven and solving the remaining problems  in "continuous" 

fashion.     The values of  the  fixed variables would be  substituted  into 

the problem, and the problem would be solved as a regular (noninteger) 

linear programming problem with  the free variables restricted to  be 

between 0 and I.     InfeaslbLllty of this problem  indicates  infeasibllity 

of  the  integer problem with  the given partial  solution.     This  is a more 

powerful   feasibility  test  than  the one  in  the present algorithm. 

(c) A series of binary variables are utilized  to represent 

Integer variables with upper bounds greater than  I.     The columns of 

these binary variables are 2    multiples of each other.     This  fact coi 

be used  to generate  such columns whenever  they are needed during  the 
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course of the computation.     Thus, only one column needs  to  be explicitly 

carried.      As  the algorithm  is programmed at present,  no  advantage  is 

taken of  the  special  structure represented by  the binary   transformations. 

(d)     Given  that  the algorithm  seems   to   function well   in  the 

early stages of computation  (i.e.,   finding an  initial   feasible  solution 

and  improving upon  it) ,   it might  be well   to  start   thinking about  hybrid 

schemes, which would use  this algorithm as a  first  stage and  then switch 

to another  technique  to   finish  the computation. 

Originally  suggested by C.  W.   Graves. 
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V.  CONCLUSION 

It  is  recommended  that  research on  this algorithm be continued 

In order to  establish  its value of  lack thereof   in dealing with various 

types of  integer programming problems.    Also,   It would  be of value   to 

run various  codes upon  the  same  set of problems   In o.der  to establish 

definite computational  guidelines   for practitioners  in  the  field. 
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